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Lagrangian Structure of the Two-Dimensional
Lotka± Volterra System
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Received November 28, 1998

The two-dimensional Lotka-Volterra system exhibits a Langrangian structure.
The Lagrangian function is linear in the velocities and consequently singular, but
the corresponding dynamics is unique. The methods of Langrangian mechanics
can be applied to this system; in particular, the generalized Noether theorem is
used to obtain symmetries and first integrals.

1. INTRODUCTION

The search for symmetries and first integrals of the long-established

two-dimensional Lotka±Volterra (LV) system describing the dynamics of a

predator±prey ecosystem has attracted some attention in the nineties (Nutku,
1990; Baumann and Freyberger, 1991; Shentil Velan and Lakshmanan, 1995).

Several methods have been used: the Lie method, PainleveÁ analysis, etc.

Some authors (e.g., Baumann and Freyberger, 1991) have expressed regret

that we cannot appeal to Noether (first) theorem in examining the symmetries

and the first integrals of the model since there is no Lagrangian from which
to derive the differential equations at issue.

Another aspect of interest in the literature is the analysis of the Hamilto-

nian structure(s) of LV systems. The Hamiltonian structure is already known

for the two-dimensional case (Nutku, 1990; Baumann and Freyberger, 1991),

but to the best of our knowledge a possible underlying Lagrangian structure

(leading, perhaps, to this Hamiltonian) has not been investigated. It is the
purpose of this paper to show that the two-dimensional LV system has such

a structure and consequently it would be of interest to use the methods of

analysis of Langrangian mechanics; in particular, in this paper the constructive
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version of Noether theorem given in CarinÄ ena and FernaÂndez-NuÂnÄ ez (1993)

is used to find the symmetries and first integrals already known in the

literature. The Lagrangian is linear in the velocities and therefore singular
(CarinÄ ena et al., 1988; FernaÂndez-NuÂnÄ ez, 1994), although the corresponding

dynamics is unique and the Noether theorem works. The one-to-one relation

between (generalized) symmetries and first integrals (CarinÄ ena et al., 1992)

does not apply because of the singularity of the Lagrangian; we will show

how independent (generalized) symmetries lead to the same first integral. A

remarkable aspect of the Lagrangian structure we have found is that it is just
the already noted Hamiltonian one (Nutku, 1990; Baumann and Frey-

berger, 1991).

To begin with, we recall that the Euler±Lagrange equations correspond-

ing to a Lagrangian linear in the velocities (FernaÂndez-NuÂnÄ ez, 1994)

L (q, qÇ ) 5 Ai (q)qÇ i 2 B (q) (1)

constitute a system of first-order differential equations, namely

V ijqÇ
j 2 v i 5 0 (2)

where V ij 5 - A j / - qi 2 - Ai/ - qj and v i 5 - B/ - qi. That means that the differential

forms a 5 ( i , j V ijdq i Ù dqj and b 5 v i dqi are exact [in fact a 5 d (Ai dqi)

and b 5 dB].

Notice that V 5 ( V ij ) is skew-symmetric, and consequently only when

the number of degrees of freedom is even could V be invertible and it will

be possible to put the system (2) in normal form qÇ i 5 V ij v j 5
V ij - B/ - qj, V ij V jk 5 d k

i . That `̀ regular ’ ’ case is very important because the

dynamics is unique and it is but a (generalized) Hamiltonian system, the
Hamiltonian function being the ``energy’ ’ function EL 5 B, while the symplec-

tic structure is determined by the matrix V . Half of the coordinates are the

`̀ coordinates’ ’ while the other half correspond to the `̀ momenta.’ ’

2. THE LAGRANGIAN STRUCTURE

The 2D LV system, representing the time evolution of a self-regulating

predator±prey system, is given by the first-order ordinary differential

equations

xÇ 5 x (a 2 y)
(3)

yÇ 5 2 y (b 2 x)

where a and b are constant parameters and the dot means time differentiation

as usual. We will limit ourselves to the case for which both x and y do not

vanish; when x (0) 5 0 then x (t) 5 0 " t and we have a one-dimensional
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system [the same argument works for y (0) 5 0]. System (3) can be set up

as a Lagrangian one. As (3) is a first-order system, we must consider a

Lagrangian linear in the velocities xÇ , yÇ .
Our system (3) can be put into the form (2) for n 5 2 when x Þ 0 and

y Þ 0, namely xÇ /xy 2 a/y 1 1 5 0, 2 yÇ /xy 2 b/x 1 1 5 0, for which

V 5 1 0 2 1/xy

1/xy 2 and v 5 1 b/x 2 1

a/y 2 1 2 (4)

Both a 5 ( 2 1/xy)dx Ù dy and b 5 (b/x 2 1)dx 1 (a/y 2 1)dy are exact;

in fact a 5 d ((ln ) y ) /2x)dx 2 (ln ) x ) /2y)dy) and b 5 d (a ln ) y ) 1 b ln

) x ) 2 x 2 y). Consequently, (3) can be considered as the Euler±Langrange

equations arising from the Langrangian

L 5
1

2

ln ) y )
x

xÇ 2
1

2

ln ) x )
y

yÇ 2 (a ln ) y ) 1 b ln ) x ) 2 x 2 y) (5)

The Lagrangian (5) is linear in the velocities and therefore singular.
Although the dynamics corresponding to a singular Lagrangian does not exist

nor is unique for any initial state, the regularity of V (x Þ 0, y Þ 0) in our

case implies a unique dynamics. The resulting system can be considered as

a Hamiltonian one on the manifold R2 2 {x 5 0} 2 {y 5 0} with symplectic

structure V . In addition, the Hamiltonian function (i.e., the energy) reads

EL 5 a ln ) y ) 1 b ln ) x ) 2 x 2 y (6)

3. SYMMETRIES AND FIRST INTEGRALS

Although the Lagrangian (5) is singular, we can use a generalized version

of Noether (first) theorem (CarinÄ ena et al., 1992) to find the symmetries and

the corresponding first integrals. While the theorem admits a converse in the

regular case, for singular L only the direct theorem works. In fact, a given
first integral would be associated with independent symmetries, as we will

see below.

We recall that a (generalized) symmetry of a Lagrangian L is a vector

field X 5 Xi(t, q, qÇ ) - / - qi such that the variation of L along the first prolongation

of X is the total time derivative of some function F. We can use this definition

in the search of the symmetries of L, looking simultaneously for both the
symmetry vector X and the associated function F (CarinÄ ena and FernaÂndez-

NuÂnÄ ez, 1993).

First of all, note that our Langrangian (5) is time independent so the

energy EL (6) is a first integral, the corresponding symmetry vector being
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X 5 xÇ - / - x 1 yÇ - / - y (CarinÄ ena and FernaÂndez-NuÂnÄ ez, 1993). This symmetry

X is the vector v3 obtained in Baumann and Freyberger (1991) for the restric-

tive case in which a 1 b 5 0. As is well known, X represents the invariance
under time translation. The energy EL is a Liapunov function for the LV

system (Hirsch and Smale, 1974) and it is used in qualitative analysis of

the dynamics.

Let us use the above method to find some symmetries in the particular

case when no dependence of the velocities is considered. We have to find

a vector

X 5 f (t, x, y)
-
- x

1 g (t, x, y)
-
- y

(7)

such that there is a function F (t, x, y) satisfying the equation

f
- L

- x
1 g

- L

- y
1 fÇ

- L

- xÇ
1 gÇ

- L

- yÇ
5 FÇ (8)

The Noether (first) theorem says that the function G 5 F 2 (f - L/ - xÇ 1 g - L/

- yÇ ) is a first integral (CarinÄ ena et al., 1992).

The search for the solutions of (8), both F and the components of the

symmetry vector f and g, is a very hard task, but the problem admits a great
simplification if we look for solutions f and g having the form

f (t, x, y) 5 t (t) w (x, y)
(9)

g (t, x, y) 5 t (t) c (x, y)

Condition (8) leads to

t (t) 5 e 2 kt

w (x, y) 5 xy
- f
- y

(10)

f (x, y) 5 2 xy
- f
- x

where f (x, y) is a solution of the first-order linear PDE

x (a 2 y)
- f
- x

2 y (b 2 x)
- f
- y

5 k f (11)

where k is an arbitrary constant. In addition, the function F and the first

integral G are
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F 5 e 2 kt F y
- f
- y 1 b 2 x

k
2

ln ) y )
2 2 2 x

- f
- x 1 a 2 y

k
1

ln ) x )
2 2 G when k Þ 0

F 5 2
y

2

- f
- y

ln ) y ) 2
x

2

- f
- x

ln ) x ) 1 f when k 5 0 (12)

G 5 e 2 kt f (x, y)

Consequently, in order to find symmetries of type (9) and their related

first integrals the main equation to solve is (10). Using the method of charac-

teristics, we arrive at a transcendent equation, namely the conservation of

the energy (6), so that it is very hard to analyze the general solution.

We will content ourselves with examining some particular solutions.
For instance, when k 5 0 the only independent solution is f 5 a ln ) y ) 1
b ln ) x ) 2 x 2 y, i.e., f 5 EL , and the symmetry vector is

X 5 x (a 2 y)
-
- x

2 y (b 2 x)
-
- y

(13)

Notice that the conservation of the energy corresponds at least to two indepen-

dent symmetries. As pointed out above, this is not surprising due to the

singular character of L. In addition, (13) is the symmetry S1 found in Shentil
Velan and Lakshmanan (1995) when the parameters a and b satisfy the

restrictive condition a 1 b 5 0.

Solutions of (11) such that - f / - x 5 - f / - y exist only when a 1 b 5 0

and are of the form f (x, y) 5 (x 1 y)k/a. Particular interesting cases are

k 5 (n 1 1)a, n Þ 2 1 being an integer. The associated first integrals

Gn 5 e 2 (n 1 1)at(x 1 y)n 1 1 (14)

are essentially the same for Gn 5 Gn 1 1
0 , and the corresponding symmetry

vectors

Xn 5 (n 1 1)e 2 (n 1 1)atxy(x 1 y)n 1 -
- x

2
-
- y 2 (15)

are obviously linearly dependent. The symmetry vector X0 coincides with

the symmetry vectors S2 in Shentil Velan and Lakshmanan (1995) and v1 in

Baumann and Freyberger (1991), whereas X1 coincides with S3 in Shentil

Velan and Lakshmanan (1995) and v2 in Baumann and Freyberger (1991).
Incidentally, Shentil Velan and Lakshmann (1995) claim to have found a

symmetry quadratic in y [vector S4 equation (4.3) in their paper]. However,

that vector neither satisfies the symmetry criterion [equation (A.6) in Shentil

Velan and Lakshmanan (1995)] nor is a Noether symmetry [equation (11)

when a 1 b 5 0 and k 5 a, this paper].
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Solving (11) by the method of separation of variables, i.e., f (x, y) 5
X (x)Y (y), yields no new first integrals. In fact, the method only works when

k 5 0 and we get f 5 xbya/ex 1 y 5 eE
L.

4. FINAL REMARKS

In this paper we have shown that the 2D Lotka±Volterra system can be

analyzed using the methods of Lagrangian dynamics: we find a Lagrangian

structure from which the already known symmetries and first integrals derive
from Noether theorem. Other (independent) symmetries could be obtained

from (11) or by eliminating the restrictive condition (9) (separation of t
variable).

Equation (11) can be obtained directly from the definition for the function

G 5 e 2 kt f (x, y) to be a first integral. In this sense, the constructions leading

to (11) would seem to be superfluous. This is not the case because we were
interested in finding the symmetry vectors also.

As another remark, note that we have chosen the ansatz (7). The theory

of generalized symmetries (CarinÄ ena and FernaÂndez-NuÂnÄ ez, 1993) allows

symmetry vectors whose components depend on the velocities. But for the

linear Lagrangian (5) this possible extension would be reduced to (7) by
means of the equations of motion (3). By the same reason, the time-translation

symmetry vector is equivalent to the symmetry vector (13), both giving rise

to the integral of the energy (6).
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